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ABSTRACT

Statistical pattern recognition models are one of the core research
topics in the segmentation of the left ventricle of the heart from
ultrasound data. The underlying statistical model usually relies
on a strong prior for the shape and appearance of the left ventricle
whose parameters can be learned using a manually segmented data
set. Unfortunately, this is usually quite complex, requiring a large
number of parameters that can be robustly learned only if the train-
ing set is sufficiently large. The difficulty in obtaining large train-
ing sets is currently a major roadblock for the further exploration
of statistical models in medical image analysis. In this paper, we
present a novel semi-supervised self-training model that reduces
the need of large training sets for estimating the parameters of sta-
tistical models. This model is initially trained with a small set
of manually segmented images, and for each new test sequence,
the system re-estimates the model parameters incrementally with-
out any further manual intervention. We show that state-of-the-art
segmentation results can be achieved with training sets containing
50 annotated examples.

1. INTRODUCTION

The segmentation of the left ventricle (LV) of the heart is a major
topic of research in the area of medical image analysis. In prac-
tice, the automatic LV segmentation represents an important tool
in clinical settings due to the following reasons: 1) it can increase
patient throughput; and 2) it can reduce inter-user variation in the
LV delineation procedure.

One of the main techniques employed to solve this problem
is based on statistical pattern recognition approaches [1–3], which
model the LV appearance and shape using a set of manually an-
notated images (i.e. the training set). This model is then used
for building a classifier that detects and segments the LV from ul-
trasound data. The models used in statistical pattern recognition
approaches usually contains from hundreds to thousands of para-
meters, which can only be robustly estimated with large training
sets, a fact usually known as the curse of dimensionality. Actually,
it is not uncommon that systems based on such approaches need
in the order of thousands of images, coming from several differ-
ent sources and annotated by different clinicians [2,4]. However,
the acquisition of such large training sets is a formidable task, de-
manding an extremely large amount of time from clinicians. The
fact that the majority of researchers working in this field cannot
have access to such large training sets results in insufficient inves-
tigation of statistical pattern recognition models.

The machine learning and computer vision communities have
faced similar issues over the last few years, which resulted in the
development of semi-supervised learning techniques [5]. These
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Fig. 1. Semi-supervised learning. The graph on the left shows the classification
problem where only a small subset of the samples are labeled. The graph on the right
displays the result of semi-supervised learning, where P (o|x) is the probability of
class o given point x.

learning methods use both annotated and unannotated training data
to estimate the parameters of statistical models. The main assump-
tion is that samples belonging to the same class tend to cluster
together in the input space, and if a few annotated examples are
given, we can associate unannotated samples of the cluster with
the label of annotated samples in that same cluster, as shown in
Fig. 1.

In this paper, we introduce a semi-supervised learning approach
that initially trains a statistical model of LV shape and appearance
using a small training set. This training set is used to build an
initial classifier that detects and segments the LV from ultrasound
data. Given a previously unseen test sequence, the system uses
the classifier to detect positive and negative hypotheses in each
frame. These hypotheses are added to the training set if the detec-
tion confidence is above a certain threshold, and the model is then
re-trained with the updated training set. This algorithm is an in-
stance of the semi-supervised self-training learning approach. Our
approach is innovative in the sense that we do not rely on a fixed
set of unannotated images, which is a common assumption that
helps the self-training process.

2. SELF-TRAINING

Assume that x ∈ <D denotes the feature vector representing the
data (e.g., image), y ∈ <N represents the annotation (e.g., manual
LV segmentation), the hypothesis confidence is measured with the
posterior classifier p(y|x), and the data density is represented by
p(x). Self-training methods assumes that p(y|x) and p(x) share
parameters in order to train the classifier p(y|x) such that annota-
tion transitions can happen only at locations where the density of
p(x) is low [5].

For the derivation of our algorithm, consider that the set of
training images is represented by X , and Y denotes the respec-
tive set of manual annotations. The goal of the self-training is
to estimate the parameters θ of the classifier p(y|x, θ) using the
annotated training set {X ,Y} and a set of unannotated images
{exi}i=1..K along with the probabilities of producing the respec-
tive annotations {eyi}i=1..K given by p(eyi|exi, θ). This is summa-



rized as [6]:

θ? = arg max
θ

P (Y|X , θ)

∝ arg max
θ

log
X

i

f(eyi, exi)
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f(eyi, exi)
,

(1)

where f(eyi, exi) : <D×<N → < has the constraints
P

i f(eyi, exi) =
1 and f(eyi, exi) ≥ 0. Using Jensen’s inequality, we can find the
following lower bound to the objective function (1):
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This lower bound is easier to maximize than the original objec-
tive function (1). Therefore, we solve the following optimization
problem:

θ? = arg max
θ

X
i

f(eyi, exi) log
p(Y, eyi|exi,X , θ)

f(eyi, exi)
(3)

subject to,
P

i f(eyi, exi) = 1, f(eyi, exi) ≥ 0. Taking the deriva-
tive of the Lagrangian with respect to f(eyi, exi), we find:

f(eyi, exi) = p(eyi|exi, θ). (4)

Hence, we can formulate an iterative algorithm comprising the
following expectation (E) and maximization (M) steps:

• E-step:
f (t)(eyi, exi) = p(eyi|exi, θ

(t−1)) (5)

• M-step:

θ(t) = arg max
θ
Ef(t)(eyi,exi)

h
log p(Y, eyi|exiX , θ)

i
, (6)

where the superscript (t) indicates the iteration index.
Therefore, we propose an iterative on-line EM algorithm (see

Alg. 1), where the goal is to maximize (with respect to θ) and
generalize (in the data space x) the model p(y|x, θ) with the con-
straint that there are no transitions of p(y|x, θ) on high density
regions of p(x). Both the generalization goal and the constraint
are achieved by incrementally incorporating in the training set ex-
amples (exi, eyi) that produced p(eyi|exi, θ) ≥ γ, where γ > 0 is a
free variable. We stress that, similar self-training algorithms use a
fixed size set of unannotated images, which is different from our
problem since the test images are dynamically provided when a
new sequence is given to the system to process.

There are three issues to discuss in Alg 1. The first point is
that θ(0) is obtained from the maximization of p(Y|X , θ) using
the annotated training data only. Hereafter, we denote the training
process to estimate θ(0) as supervised, and the training for θ(t) for
t > 0 as semi-supervised (in the sense that unannotated samples
will be incorporated in the learning scheme). The second is that
we select the samples to be included in the training set by sam-
pling a Gaussian mixture model (7) and taking exi (with annotation
eyi) with probability p(eyi|exi, θ

(t−1))×N (eyi, Σ), whereN (µ, Σ)
is the Gaussian probability density function with mean µ and co-
variance Σ (we set Σ to be 10−3 × I, with I the identity matrix).
In this work, the number of samples drawn from (7) is the same
as the size of the training set |{X ,Y}|. The third point, which
we provide more details in the next section, is that the classifier
p(y|x, θ) is based on deep learning methods. Note that in Alg. 1,
T denotes the maximum number of iterations, which is set to 100.

Algorithm 1 Iterative on-line EM
for t = 1:T do

E-STEP: Sample

(eY, eX ) ∼
X

i

p(eyi|exi, θ
(t−1)

)×N (eyi, Σ) (7)

eY = Y ∪ eY, eX = X ∪ eX
M-STEP:
maximize

θ(t) p(eY| eX , θ)

subject to: (for all (eyi, exi) ∈ (eY, eX ))

p(eyi|exi, θ
(t−1)

) ≥ γ
X

i

p(eyi|exi, θ
(t−1)

) = 1
(8)

if ‖θ(t) − θ(t−1)‖2 ≤ ε then STOP iterations.
end for

Fig. 2. Original training image (top left) with the manual LV segmentation in
yellow line and star markers (top middle) with the rectangular patch representing
a canonical coordinate system for the segmentation markers. The top-right image
shows the reference patch with the base and apical points highlighted and located at
their canonical locations within the patch (these points are used to define the rigid
transform of the patch). The images on the second and third rows display several
positive and negative patches (respectively) used to train the rigid classifier.

3. SEGMENTING THE LEFT VENTRICLE USING DEEP
LEARNING METHODS

The classifier p(y|x, θ) is based on deep neural networks [7],
which is a type of deep learning classifier. Deep neural networks
have been recently explored by Carneiro et al. [1], who showed
that this classifier can achieve state-of-the-art LV segmentation re-
sults with 400 annotated training images.

Consider that y = [sj ]j=1..N represents the vector of key-
points sj ∈ <2 for the LV segmentation of an ultrasound image I .
The annotated training set is denoted by D = {(I, ϑ,y)i}i=1..M ,
with LV images Ii, the respective manual annotation yi and the
parameters of a rigid transformation ϑi ∈ <5 (position p ∈ <2,
orientation ξ ∈ [−π, π], and scale σ ∈ <2) that aligns rigidly
the annotation points to a canonical coordinate system (see Fig.2).
Our objective is to find the LV contour with the following decision
function:

y∗ = E [y|I, c = 1,D] =

Z

y

yp(y|I, c = 1,D)dy, (9)

where c = 1 is a random variable indicating the presence of LV in
image I . Eq. 9 can be expanded using

p(y|I, c = 1,D) =

Z

ϑ

p(y|ϑ, I, c = 1,D)p(ϑ|I, c = 1,D)dϑ.

(10)
The first right-hand side term in (10), representing the non-rigid
part of the detection, is defined as follows:

p(y|ϑ, I, c = 1,D) =
Y

i

p(si|ϑ, I, c = 1,D), (11)



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

in
te

ns
ity

 ∈
 [

0,
25

5]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

s
i
 index ∈  [0,1]

(a) (b)
Fig. 3. (a) Lines perpendicular (yellow lines) to annotation points (magenta dots),
(b) intensity value profiles (from inside to outside the LV) through perpendicular-
lines. Those intensity profiles and respective LV contour location are used to train the
regressor of the non-rigid classifier. Figure from [1].

Training set

Test set

Fig. 4. First images of a subset of the sequences used as training and test sets.

where p(si|ϑ, I, c = 1,D) represents the probability that the point
si is located at the LV contour. Assuming that ψ denotes the para-
meter vector of the classifier for the non-rigid contour, we compute

p(si|ϑ, I, c = 1,D) =

Z

ψ

p(si|ϑ, I, c = 1,D, ψ)p(ψ|D)dψ.

(12)
In practice, we run a maximum a posteriori learning procedure to
estimate the model parameters [1], which produces ψMAP, meaning
that in the integral (12) we have p(ψ|D) = δ(ψ − ψMAP), where
δ(.) denotes the Dirac delta function. Also, instead of computing
the probability p(si|ϑ, I, c = 1,D), we train a regressor that in-
dicates the most likely edge location (Fig.3); this roughly means
that p(si|ϑ, I, c = 1,D) = δ(si − sr

i (ϑ, I, c = 1,D)), with sr
i (.)

being the regressor result for the ith contour point.
The second right hand side term in (10) represents the rigid

detection, which is denoted as

p(ϑ|I, c = 1,D) = Zp(c = 1|ϑ, I,D)p(ϑ|I,D) (13)

where Z is a normalization constant, p(ϑ|I,D) is a prior on the
parameter space, and

p(c = 1|ϑ, I,D) =

Z

ρ

p(c = 1|ϑ, I,D, ρ)p(ρ|D)dρ, (14)

with ρ being the vector of classifier parameters, which is estimated
through a maximum a posteriori learning procedure [1], producing
ρMAP. This means that in (14) p(ρ|D) = δ(ρ− ρMAP).

4. SELF-TRAINING AND DETECTION PROCEDURES

In this section, we first introduce the training and test sets, the
manual annotation protocol, and then we explain the self-training
and detection procedures.

We have two sets of annotated data. The first set contains 400
ultrasound images of the LV, which have been taken from 12 se-
quences (12 sequences from 12 unhealthy subjects1 with no over-
lap), where each sequence contains an average of 34 annotated

1In the data presented in this paper all the subject suffered from some
malfunction in the segments of the endocardium of the LV.

frames. Let us denote this set asD. This set contains images using
the apical two and four-chamber views. The second set, used ex-
clusively for testing, contains two sequences of 80 images, where
each sequence has 40 annotated images (2 sequences from 2 un-
healthy subjects with no overlap). This set is denoted by T with
sequences A and B. Note that there is no overlap between subjects
in sets D and T . We worked with one cardiologist, who annotated
all images in the database, i.e., sets D and T (see Fig. 2 for the an
illustration of the annotations). The first image of two sequences
from D and two sequences from T are shown in Fig. 4.

For the training procedure, consider that the parameters of the
discriminative classifier p(y|x, θ) presented in (1) consists of the
parameters ρ and ψ of the rigid (14) and non-rigid (12) classifiers,
respectively, as follows: θ = [ρ, ψ]. This classifier is initially
trained (supervised training) with a subset of D (in this paper,
we consider subsets of sizes {2, 6, 10, 20, 50, 100, 200} that are
formed by uniformly sampling D) to maximize p(Y|X , θ) [1],
which builds θ(0) = [ρ

(0)
MAP, ψ

(0)
MAP] (for each subset) in Alg. 1.

Given a test sequence in T the classifier is iteratively trained (semi-
supervised training) using the detection results from the previous
time instant t− 1, according to the description of Alg. 1.

For the training of the rigid classifier, we build an image scale
space L(p, σ) = N (p, σ) ∗ I(p), whereN (p, σ) is the Gaussian
kernel, ∗ is the convolution operator, I(p) is the input image,
σ is the image scale parameter, and p is the image coordinate.
Three separate classifiers (14) are trained; one for each scale σ =
{4, 8, 16} (the values and number of scales were determined based
on cross validation of the initial training set at iteration t = 0). The
positive and negative training sets are defined based on a scale-
dependent margin mσ that increases by a factor of two after each
octave. Positives for L(p, σ) are randomly generated inside the
range [ϑ−mσ/2, ϑ + mσ/2], and negatives are randomly gener-
ated outside the range [ϑ−mσ, ϑ+mσ], where ϑ is the parameter
vector representing the rigid transformation of the LV annotation.
The non-rigid regressor (12) is trained at σ = 4, where each train-
ing sample is a line of 41 pixels of length extracted perpendicu-
larly from the LV contour points (see Fig. 3) and the label to learn
is the pixel index in {1, ..., 41} that is closest to the LV contour. A
cross-validation procedure using 20% of the initial training set for
validation is used to estimate the following parameters: 1) num-
ber of nodes per layer of regressor network; 2) number of nodes
per layer of the classifier networks; and 3) the prior distribution
p(ϑ|I,D) used in (13).

The detection procedure consists of running the rigid classi-
fier at scale σ = 16 on the Kcoarse initial hypotheses [1] (here,
Kcoarse = 1000), by sampling the random distribution p(ϑ|I,D)
from (13). From this detection, cluster the hypotheses (using k-
means algorithm) and select the top Kfine clusters (here, Kfine =
10) in terms of the best hypothesis within each cluster [1]. Then
run the rigid classifier at scale σ = 8 on these hypotheses and
repeat the procedure for scale σ = 4. Finally, run the model rep-
resented by (10) over the final top Kfine hypotheses. Note that
we substitute the integral in (9) for an average over the top Kfine

hypotheses weighted by p(y|I, c = 1,D). The final segmenta-
tion contour points are then projected to the principal component
analysis (PCA) space built with the respective subset of the train-
ing set D. The PCA space transforms the 41-dimensional vector
(representing the contour) to a 5-dimensional vector, which is back
projected onto the original contour space, producing a less noisy
final contour [1].

5. EXPERIMENTS

In this section, the importance in the number of images used to
estimate θ(0) in Alg. 1. We also compare quantitatively the per-
formance of the supervised and semi-supervised methods. Fur-



Fig. 5. Examples of the detection improvement provided by the semi-supervised
(right column) learning compared to the supervised (left column) model trained with
50 images.

thermore, we compare our results to state-of-the-art LV detectors
recently proposed by Carneiro et al. [1], by Comaniciu et al. [2,3]
and by Nascimento et al. [8]. The performance of the detectors is
assessed by comparing the contour estimates with manual refer-
ence contours (see Sec. 4). To accomplish this, we use four error
metrics used in the literature: (i) average metric (AV) (ii) Haus-
dorff metric (HDF), (iii) Hammoude distance (HMD) and (iv)
mean absolute distance (MAD) (see [2,8] for a comprehensive de-
scription of these error metrics).

Now we show how the semi-supervised training method im-
proves the performance of the system initially trained with small
training sets (this initial system is labeled ’Supervised’). We also
compare the results with the performance of the methods proposed
in [1], [3] and [8]. For this experiment, we build three differ-
ent training sets of sizes in S and show the results using mean
and standard deviation for each error measure (Fig. 6). Compared
to the supervised training, note that the proposed semi-supervised
learning reduces both the mean and the standard deviation for most
of the error measures. In general, the semi-supervised approach
starts producing state-of-the-art results with initial training sets
containing 50 images, but notice that for sequence T (A) the sys-
tem shows competitive results with initial training sets containing
only 6 images. Figure 5 displays two cases showing the improve-
ment provided by semi-supervised learning.

6. DISCUSSION AND CONCLUSIONS

In this paper, we presented a novel semi-supervised self-training
methodology applied to the segmentation of the left ventricle of
the heart from ultrasound data. The novelties reside in the formu-
lation of the self-training algorithm that keeps adding training im-
ages as frames of a new test sequence are presented to the system.
This means that the initial set of annotated and unannotated train-
ing images is not fixed, which is a common assumption adopted
by semi-supervised learning approaches. For this reason, the se-
lection criterion to add unannotated images to the training set be-
comes a critical aspect of the algorithm, and we provide an em-
pirical study on the selection of such criterion. We also derived
the formulation of our algorithm. The results show that it is possi-
ble to have state-of-the-art results with training sets containing 50
annotated training images. We plan to study better selection cri-
terion methods [9] to improve even more the results presented in
this paper.
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